POLITECNICO DI MILANO

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Skyline and Ranking Queries: a Reconciliation

Davide Martinenghi Joint work with Paolo Ciaccia Rome, April 28, 2017

Outline

- Finding interesting objects in a dataset
 - Rank aggregation and ranking queries
 - Skyline queries
 - Lexicographical approaches
 - **Restricted skylines**
 - Unifying skyline and ranking queries
 - Revisiting dominance
 - Non-dominated objects
 - Potentially optimal objects
- Computing restricted skylines
 - The case of Lp norms
 - Algorithmic alternatives
- Ongoing and future work

Finding interesting objects

in a dataset

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Rank aggregation

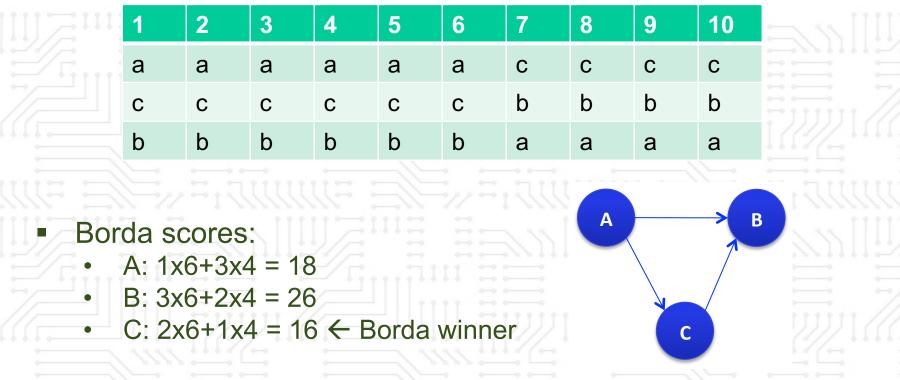
- [Borda, 1770][Marquis de Condorcet, 1785] Rank aggregation is the problem of combining several ranked lists of objects in a robust way to produce a single consensus ranking of the objects
- Main applications of rank aggregation:
 - Combination of user preferences expressed by multi-criteria queries
 - Example: ranking restaurants by combining criteria about culinary preference, driving distance, stars, …
 - Meta-search
 - For a given query, combine the results from different search engines
 - Nearest neighbor problem (e.g., similarity search)
 - Given a database D of n points in some metric space, and a query q in the same space, find the point (or the k points) in D closest to q

Rank aggregation

- [Borda, 1770][Marquis de Condorcet, 1785] Rank aggregation is the problem of combining several ranked lists of objects in a robust way to produce a single consensus ranking of the objects
 - Old problem (social choice theory) with lots of open challenges
 - Given: *n* candidates, *m* judges/voters

999	Candidate	Candidate	999	Candidate	Ŋ	Candidate	1	Candidate	1
	а	b		d		е		С	
	b	d		b		а		е	
	С	е		е		С		а	
	d	а		С		d		b	
	е	С		а		b		d	

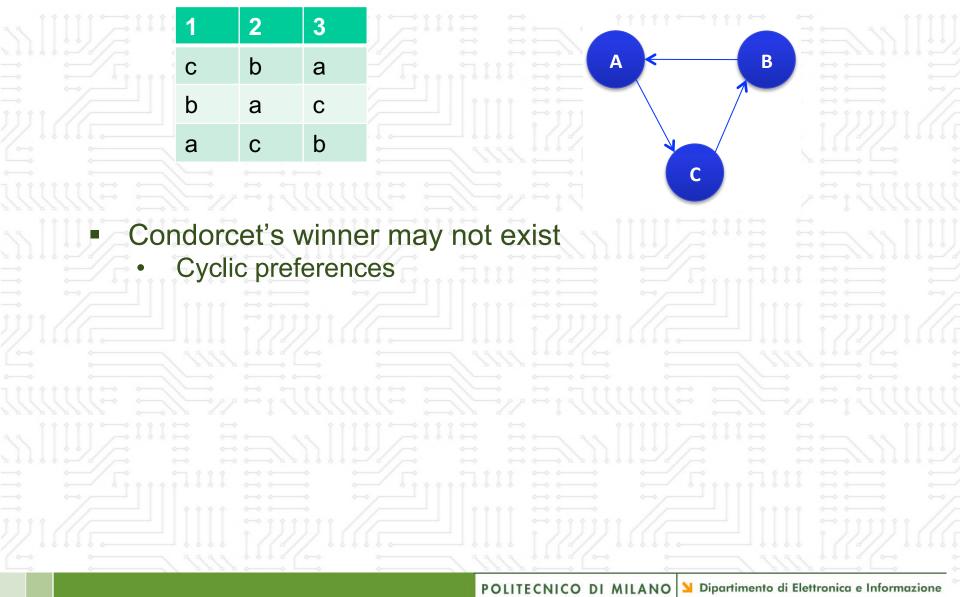
- Judge 1Judge 2Judge 3Judge 4Judge 5What is the overall ranking according to all the judges?• No visible score assigned to candidates, only ranking
- Who is the best candidate?


Borda's and Condorcet's proposals

- Borda's proposal
 - Election by order of merit
 - First place \rightarrow 1 point
 - Second place \rightarrow 2 points
 - Candidate's score: sum of points
- Borda winner: lowest scoring candidate

Condorcet winner:

 A candidate who defeats every other candidate in pairwise majority rule election


Borda winner <> Condorcet winner

- Condorcet's criterion: A beats both B and C in pairwise majority
 - A is Condorcet's winner

POLITECNICO DI MILANO 🎽 Dipartimento di Elettronica e Informazione

Condorcet's paradox

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Main approaches to rank aggregation

- Axiomatic approach
 - Desiderata of aggregation function formulated as "axioms"
 - By the classical result of Arrow, a small set of natural requirements cannot be simultaneously achieved by any nontrivial aggregation function
- Metric approach
 - Finding a new ranking R whose total distance to the initial rankings R₁, ..., R_n is minimized
 - For several metrics, NP-hard to solve exactly
 - E.g., the Kendall tau distance K(R₁, R₂), defined as the number of exchanges in a bubble sort to convert R₁ to R₂
 May admit efficient approximations

Combining opaque rankings

- Techniques using only the position of the elements in the ranking (no other associated score)
 - We review MedRank, proposed by Fagin et al.
 - An algorithm for rank aggregation based on the notion of median

Input: *m* rankings of *n* elements

Output: the top k elements in the aggregated ranking

- 1. Use sequential accesses in each ranking, one element at a time, until there are k elements that occur in more than m/2 rankings
- 2. These are the top k elements
- MedRank is instance-optimal
 - Among the algorithms that access the rankings in sequential order, this algorithm is the best possible algorithm (to within a constant factor) on every input instance

MedRank example: hotels in Paris

Hotels by price	Hotels by rating	
/ Ibis	Crillon	
Etap	Novotel	Top 3 hotels
Novotel	Sheraton	Novotel
Mercure	Hilton	Hilton
Hilton	Ibis	Ibis
Sheraton	Ritz	
Crillon	Lutetia	
· ···		

Strategy:

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

NB: price and rating are opaque, only the position matters

Ranking queries with a scoring function

- Several studies consider rankings where the objects, besides the position, also include a score (usually in the [0, 1] interval)
 - Traditionally, two ways of accessing data:
 - Sorted (sequential) access: access, one by one, the next element (together with its score) in a ranked list, starting from top
 - Random access: given an element, retrieve its score (position in the ranked list or other associated value)
- Main interest in the top k elements of the aggregation
 - Need for algorithms that quickly obtain the top results
 - ... without having to read each ranking in its entirety
- Several algorithms developed in the literature to minimize the accesses when determining the top k elements
 - Main works by Fagin et al.

Fagin's algorithm for monotone queries

Input: a monotone query combining rankings $R_1, ..., R_n$ Output: the top *k* <object, score> pairs

- 1. Extract the same number of objects by sequential accesses in each ranking until there are at least *k* objects that match the query
- 2. For each extracted object, compute its overall score by making random accesses wherever needed
- 3. Among these, output the *k* objects with the best overall score

Complexity is sub-linear in the number N of objects

Proportional to the square root of N when combining two rankings

0 0	Hotels	Cheapness	Hotels	Rating	
0 0 0	lbis	.92	Crillon	.9	
0.0	Etap	.91	Novotel	.9	Top 3 Score
(1	Novotel	.85	Sheraton	.8	
	Mercure	.85	Hilton	.7	
5	Hilton	.825	lbis	.7	
0 0	Sheraton	.8	Ritz	.7	elle estilit
0 0 0	Crillon	.75	Lutetia	.6	
1					

Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

1	Hotels	Cheapness	Hotels	Rating	
0 0 0	lbis	.92	Crillon	.9	
0 0	Etap	.91	Novotel	.9	Top 3 Score
(1	Novotel	.85	Sheraton	.8	
0.0	Mercure	.85	Hilton	.7	
2 9	Hilton	.825	lbis	.7	
0 0	Sheraton	.8	Ritz	.7	ene envil
0 0 0	Crillon	.75	Lutetia	.6	
1					

Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

Î	Hotels	Cheapness	Hotels	Rating	
0 0 0	Ibis	.92	Crillon	.9	
0 0	Etap	.91	Novotel	.9	Top 3 Score
1	Novotel	.85	Sheraton	.8	· · · · · · · · · · · · · · · · · · ·
	Mercure	.85	Hilton	.7	
1	Hilton	.825	lbis	.7	
0 0	Sheraton	.8	Ritz	.7	ente estalla
0 0 0	Crillon	.75	Lutetia	.6	
(1				111/00 o	

Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

1	Hotels	Cheapness	Hotels	Rating	
0 0 0	lbis	.92	Crillon	.9	
0 0	Etap	.91	Novotel	.9	Top 3 Score
(1	Novotel	.85	Sheraton	.8	
	Mercure	.85	Hilton	.7	
1	Hilton	.825	lbis	.7	
0 0	Sheraton	.8	Ritz	.7	ente estalla
0 0 0	Crillon	.75	Lutetia	.6	
1					
9.9	·	a bbbd/oo	e	6662/00 0	

• Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

1	Hotels	Cheapness	Hotels	Rating	
0 0 0	Ibis	.92	Crillon	.9	
0 0	Etap	.91	Novotel	.9	Top 3 Score
1	Novotel	.85	Sheraton	.8	
0	Mercure	.85	Hilton	.7	
100	Hilton	.825	lbis	.7	
0 0	Sheraton	.8	Ritz	.7	elle Estil
0 0 0	Crillon	.75	Lutetia	.6	
(1					

Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

î	Hotels	Cheapness	Hotels	Rating	
0 0 0	Ibis	.92	Crillon	.9	
0 0	Etap	.91	Novotel	.9	Top 3 Score
1	Novotel	.85	Sheraton	.8	
0	Mercure	.85	Hilton	.7	
100	Hilton	.825	Ibis	.7	
0 0	Sheraton	.8	Ritz	.7	ene enul
0 0 0	Crillon	.75	Lutetia	.6	
1		a bbbd (mo		6664/00 0	

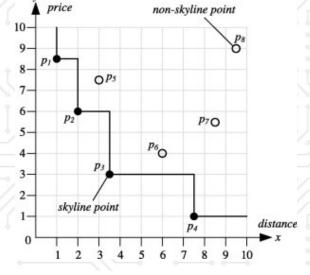
Query: hotels with best price and rating

Aggregation function: 0.5*cheapness+0.5*rating

- Make one sequential access at a time in each ranking
- Look for hotels that appear in both rankings

0	Hotels	Cheapness	Hotels	Rating			
0 0 0	Ibis	.92	Crillon	.9	Æ		-771117
0 0	Etap	.91	Novotel	.9	° j	Тор 3	Score
1	Novotel	.85	Sheraton	.8	÷	Novotel	.875
0	Mercure	.85	Hilton	.7		Crillon	.825
100	Hilton	.825	Ibis	.7		Ibis	.81
0 0	Sheraton	.8	Ritz	.7	F		
0 0 0	Crillon	.75	Lutetia	.6	- Fi		
1		a 6669/00		6661/00 0	0		

Query: hotels with best price and rating


- Aggregation function: 0.5*cheapness+0.5*rating
- Strategy:
 - Now complete the score with random accesses

Ranking queries – wrap-up

- Effective in identifying the best objects according to a specific scoring function
 - Excellent control of the cardinality of the result (k is an input parameter of a top-k query)
 - For a user, it is difficult to specify a scoring function
 - E.g., the weights of a weighted sum
- Computation is very efficient
 - E.g., N log k for local, unordered datasets
 - Many different results for different settings
- The scoring function allows the user to trade-off between different attributes
 - E.g., relative importance of attributes

Skylines

- Used in *multi-objective optimization*:
 - find objects that are good according to several different perspectives (e.g., attribute values A_1, \ldots, A_d)
 - Based on the notion of dominance
- Tuple t dominates tuple s, indicated t \prec s, iff
 - $\forall i. 1 \le i \le d \rightarrow t[A_i] \le s[A_i]$ (t is nowhere worse than s)
 - ∃j. $1 \le j \le d \land t[A_j] < s[A_j]$ (and better at least once)
- The skyline of a relation r is the set of non-dominated tuples
- In 2D, the shape resembles the contour of the dataset (hence the name)
- Skylines are agnostic wrt user preferences

Skylines – wrap-up

- Effective in identifying potentially interesting objects if nothing is known about the preferences of a user
- Very simple to use (no parameters needed!)
- Too many objects for large, anti-correlated datasets
 - Computation is essentially quadratic in the size of the dataset (and thus not so efficient)
- Can't leverage known user preferences wrt attributes (e.g., price is more important than distance)

The lexicographical approach

- Used in *multi-objective optimization*:
 - find objects that are good according to several different perspectives (e.g., attribute values A_1, \ldots, A_d)
 - a strict priority among different attributes is established
- Point of view too narrow:
 - linear priority between attributes
 - even the smallest difference in the most important attribute can never be compensated by the other attributes
- Prioritized skylines:
 - combination of skylines with the lexicographic approach
 - aim: reducing the size of the result
 - no trade-off between attributes possible
 - still no explicit control on the result cardinality

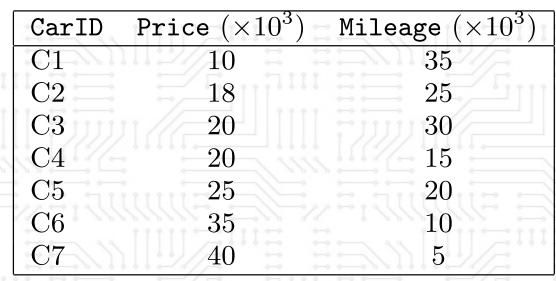
Comparing different approaches

ļ		Ranking queries	Lexicographic approach	Skyline queries
S	implicity	No	Yes	Yes
	verall view of teresting results	No	No	Yes
	ontrol of ardinality	Yes	Yes	No
	rade-off among ttributes	Yes	No	No
in	elative nportance of ttributes	Yes	Yes	No

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Skylines, revisited

Two equivalent points of view: Non-dominated tuples: $SKY(r) = \{t \in r \mid \nexists s \in r. \ s \prec t\}$ Tuples optimal according to a monotone scoring function: $SKY(r) = \{ t \in r \mid \exists f \in \mathcal{M}. \forall s \in r. s \neq t \to f(t) < f(s) \}$ (*M* is the set of all monotone scoring functions)

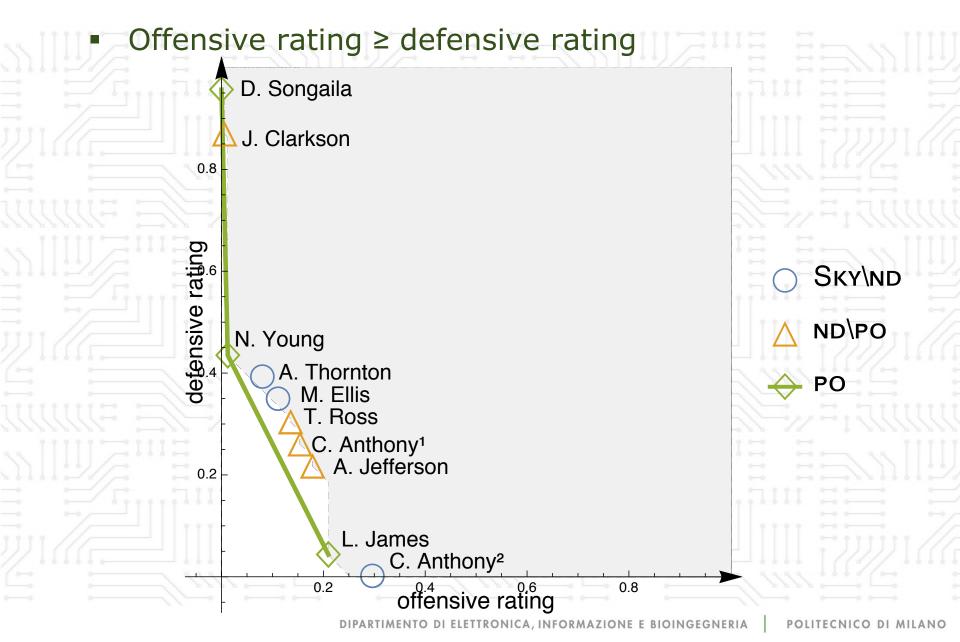

Restricted skylines

- A combination (or, better, reconciliation) of skyline and ranking queries
 - Take into account different importance of different attributes, without a strict priority as in the lexicographic approach
 - Allow a family of scoring functions F instead of a single one to characterize the interesting objects
 - *F* is possibly specified by means of constraints on the weights
 - Notion of dominance generalized to *F*-dominance
- For a set of monotone functions F, [0,1]^d→R⁺, tuple t Fdominates tuple s<>t, denoted by t <_F s, iff, ∀f∈F. f(t)≤f(s)
 - Observe that, when *F* is the set of all monotonic functions *M*, then \prec_F coincides with standard dominance \prec
- Idea: generalize the two views of skylines when $F \subseteq M$

ND-Sky and PO-Sky

Skyline as non-dominated tuples: $SKY(r) = \{t \in r \mid \nexists s \in r. \ s \prec t\}$ Non-Dominated Skyline (ND-Sky): $ND-SKY(r; \mathcal{F}) = \{t \in r \mid \nexists s \in r. \ s \prec_{\mathcal{F}} t\}$ Skyline as tuples optimal wrt a monotone scoring function: $SKY(r) = \{ t \in r \mid \exists f \in \mathcal{M}. \forall s \in r. s \neq t \to f(t) < f(s) \}$ Potentially Optimal Skyline (PO-Sky): PO-SKY $(r; \mathcal{F}) =$ $\{t \in r \mid \exists f \in \mathcal{F}. \ \forall s \in r. \ s \neq t \to f(t) < f(s)\}$

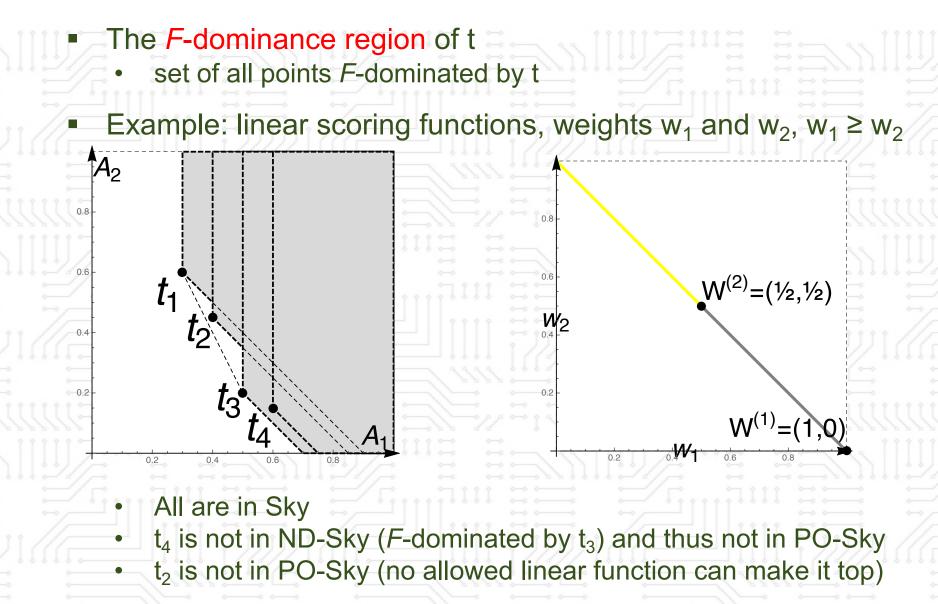
Restricted skylines - example

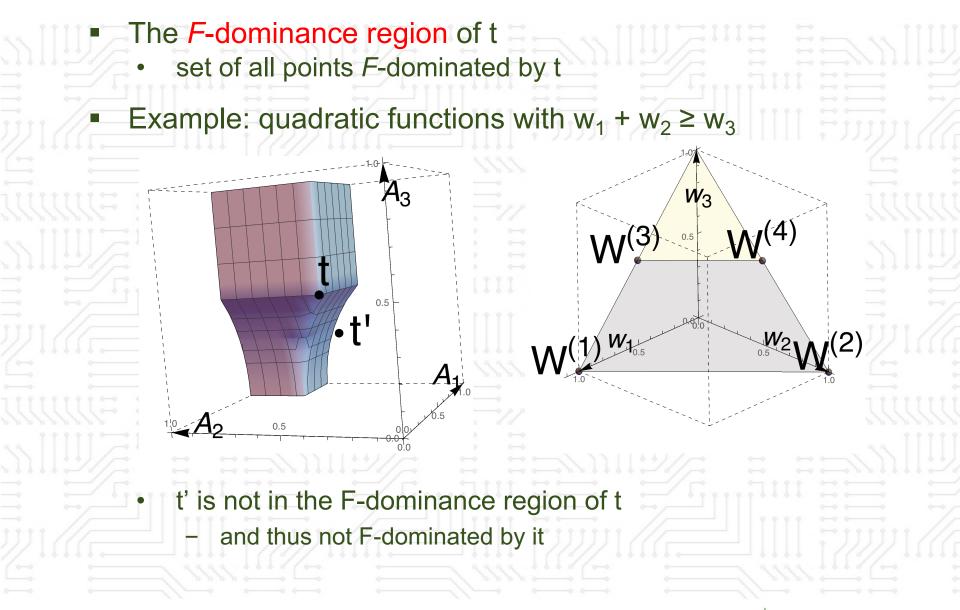


Sky returns C1, C2, C4, C6, C7

- C3 dominated by C2 and C5 by C4
- Consider $\mathcal{F} = \{w_P \text{Price} + w_M \text{Mileage} \mid w_P \geq w_M\}$
- ND-Sky returns C1, C2, C4
 - C6 and C7 are *F*-dominated by C4
- PO-Sky returns C1, C4

No allowed combination of weights can make C2 the top car


Restricted skylines – example from a real dataset


Basic properties


- Everything collapses to Sky, when F=M PO-SKY(r; M) = ND-SKY(r; M) = SKY(r)
 Otherwise there is an inclusion relationship: PO-SKY(r; F) ⊆ ND-SKY(r; F) ⊆ SKY(r)
 Smaller sets of functions determine smaller result sets ND-SKY(r; F₁) ⊆ ND-SKY(r; F₂) for F₁⊆F₂ PO-SKY(r; F₁) ⊆ PO-SKY(r; F₂)
 - Note that sets of functions may be determined by constraints on weights

F-dominance regions

F-dominance regions

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Lp Norms

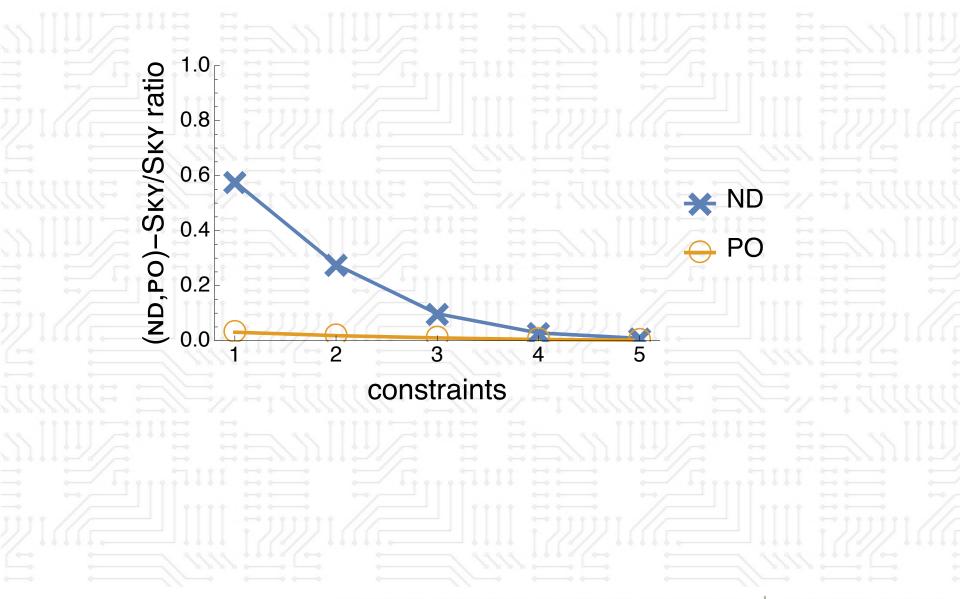
Common scoring functions are characterized by a weight vector $W=(w_1,...,w_d)$:

$$L_p^W(t) = \left(\sum_{i=1}^d w_i t [A_i]^p\right)^{1/p}, \quad p \in \mathbb{N}$$

thus defining a family of scoring functions:

$$\mathcal{L}_p = \{ L_p^W \mid W \in \mathcal{W} \}, \quad p \in \mathbb{N}$$

For these functions, the F-dominance test t \prec_F s can be checked in two ways:


- 1. by solving a linear program, or
- 2. by checking if s is in the F-dominance region of t

The second approach is simpler, but requires computing the vertices of a polytope (vertex enumeration problem)

Algorithmic alternatives

- ND-Sky requires checking *F*-dominance for all pairs of tuples
- Appropriate pre-sorting of the dataset avoids lots of tests
- F-dominance regions need to be computed only once per candidate F-dominant tuple
 - Very efficient
- Although ND-Sky ⊆ Sky, first computing Sky and then removing F-dominated tuples is seldom beneficial
 - A tuple t in ND-Sky is also in PO-Sky if it is not F-dominated by any convex combination of the other tuples in ND-Sky
 - Very costly
 - Sufficient conditions for pruning tuples may speed up the computation

Effectiveness of restricted skylines vs skylines

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO


DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Wrap-up

- All approaches to multi-criteria queries have pros and cons
- We have tried to reconcile ranking queries and skylines into a unifying framework
 - Skylines have been generalized from two points of view:
 - Non-dominated objects
 - Potentially optimal objects
- Results
 - Control over the importance of attributes
 - Much better control over the cardinality of the result
 - Easier specification of functions than top-k queries
 - Efficiency often better than skylines (but not top-k queries)

Future work

- Computation strategies specified for the Lp class
 - What happens with other classes?
- Restricted skylines generalize skylines (not k-skybands) and top-k queries (for k=1, not for k>1)
 - How to address these cases?

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Main References

Historical papers

- Jean-Charles de Borda *Mémoire sur les élections au scrutin*. Histoire de l'Académie Royale des Sciences, Paris 1781
- Nicolas de Condorcet Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, 1785
- Kenneth J. Arrow
 A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328–346, 1950

Rank aggregation and ranking queries

- Ronald Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312
- Ronald Fagin
 Combining Fuzzy Information from Multiple Systems. PODS 1996: 216-226
- Ronald Fagin Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10
- Ronald Fagin, Amnon Lotem, Moni Naor Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines and k-Skybands

- Stephan Börzsönyi, Donald Kossmann, Konrad Stocker *The Skyline Operator*. ICDE 2001: 421-430
- Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang *Skyline with Presorting*. ICDE 2003: 717-719
- Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger
 Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Main References

Extensions of skylines: flexible skylines, ORD/ORU

- Paolo Ciaccia, Davide Martinenghi Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)
- Paolo Ciaccia, Davide Martinenghi
 FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

Regret queries

Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J. Lipton, Jun (Jim) Xu Regret-Minimizing Representative Databases. VLDB 2010.

Extensions of ranking queries: uncertainty, proximity, diversity

- Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011: 805-816
- Davide Martinenghi, Marco Tagliasacchi Proximity Rank Join. PVLDB 3(1): 352-363 (2010)
- Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi Top-k bounded diversification. SIGMOD Conference 2012: 421-432
- Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Nørvåg Reverse top-k queries. ICDE 2010: 365-376

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO