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Finding interesting objects

in a dataset



Rank aggregation

§ Rank aggregation is the problem of combining several ranked 
lists of objects in a robust way to produce a single consensus 
ranking of the objects

§ Main applications of rank aggregation:
– Combination of user preferences expressed by multi-criteria 

queries
– Example: ranking restaurants by combining criteria about 

culinary preference, driving distance, stars, …
• Meta-search
– For a given query, combine the results from different search 

engines
– Nearest neighbor problem (e.g., similarity search)

– Given a database D of n points in some metric space, and a 
query q in the same space, find the point (or the k points) in 
D closest to q

[Borda, 1770][Marquis de Condorcet, 1785]



Rank aggregation

§ Rank aggregation is the problem of combining several ranked 
lists of objects in a robust way to produce a single consensus 
ranking of the objects
• Old problem (social choice theory) with lots of open challenges
• Given: n candidates, m judges/voters

§ What is the overall ranking according to all the judges?
• No visible score assigned to candidates, only ranking

§ Who is the best candidate?
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Borda’s and Condorcet’s proposals

§ Borda’s proposal
• Election by order of merit
– First place à 1 point
– Second place à 2 points
– …

• Candidate’s score: sum of points

§ Borda winner: lowest scoring candidate

§ Condorcet winner:
• A candidate who defeats every other candidate in pairwise

majority rule election



Borda winner <> Condorcet winner

§ Borda scores:
• A: 1x6+3x4 = 18
• B: 3x6+2x4 = 26
• C: 2x6+1x4 = 16 ß Borda winner

§ Condorcet’s criterion: A beats both B and C in pairwise
majority
• A is Condorcet’s winner
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Condorcet’s paradox

§ Condorcet’s winner may not exist
• Cyclic preferences
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Main approaches to rank aggregation

§ Axiomatic approach
– Desiderata of aggregation function formulated as “axioms”
– By the classical result of Arrow, a small set of natural 

requirements cannot be simultaneously achieved by any 
nontrivial aggregation function

§ Metric approach
– Finding a new ranking R whose total distance to the initial 

rankings R1, …, Rn is minimized
– For several metrics, NP-hard to solve exactly

– E.g., the Kendall tau distance K(R1, R2), defined as the 
number of exchanges in a bubble sort to convert R1 to R2

– May admit efficient approximations



Combining opaque rankings

§ Techniques using only the position of the elements in 
the ranking (no other associated score)

§ We review MedRank, proposed by Fagin et al.
– An algorithm for rank aggregation based on the notion 

of median

§ MedRank is instance-optimal
– Among the algorithms that access the rankings in 

sequential order, this algorithm is the best possible 
algorithm (to within a constant factor) on every input 
instance

Input: m rankings of n elements 

Output: the top k elements in the aggregated ranking 

1. Use sequential accesses in each ranking, one 
element at a time, until there are k elements that 
occur in more than m/2 rankings 

2. These are the top k elements



MedRank example: hotels in Paris

§ Strategy:
• Make one sequential access at a time in each ranking
• Look for hotels that appear in both rankings

NB: price and rating are opaque, only the position 
matters

Hotels by price Hotels by rating
Ibis Crillon
Etap Novotel
Novotel Sheraton
Mercure Hilton
Hilton Ibis
Sheraton Ritz
Crillon Lutetia
… …

Top 3 hotels
Novotel
Hilton
Ibis



Ranking queries with a scoring function

§ Several studies consider rankings where the objects, 
besides the position, also include a score (usually in 
the [0, 1] interval)

§ Traditionally, two ways of accessing data:
• Sorted (sequential) access: access, one by one, the next 

element (together with its score) in a ranked list, 
starting from top

• Random access: given an element, retrieve its score 
(position in the ranked list or other associated value)

§ Main interest in the top k elements of the aggregation
• Need for algorithms that quickly obtain the top results
• … without having to read each ranking in its entirety

§ Several algorithms developed in the literature to 
minimize the accesses when determining the top k 
elements
• Main works by Fagin et al.



Fagin’s algorithm for monotone queries

§ Complexity is sub-linear in the number N of objects
• Proportional to the square root of N when combining two 

rankings

Input: a monotone query combining rankings R1, …, Rn
Output: the top k <object, score> pairs 

1. Extract the same number of objects by sequential 
accesses in each ranking until there are at least k 
objects that match the query

2. For each extracted object, compute its overall score 
by making random accesses wherever needed

3. Among these, output the k objects with the best 
overall score



Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Aggregation function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sequential access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 3 Score
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Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Aggregation function: 0.5*cheapness+0.5*rating

§ Strategy:
• Now complete the score with random accesses

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 3 Score
Novotel .875
Crillon .825
Ibis .81



Ranking queries – wrap-up

§ Effective in identifying the best objects according to a specific 
scoring function
• Excellent control of the cardinality of the result (k is an input 

parameter of a top-k query)

§ For a user, it is difficult to specify a scoring function
• E.g., the weights of a weighted sum

§ Computation is very efficient
• E.g., N log k for local, unordered datasets
• Many different results for different settings

§ The scoring function allows the user to trade-off between 
different attributes
• E.g., relative importance of attributes



Skylines

§ Used in multi-objective optimization:
• find objects that are good according to several different 

perspectives (e.g., attribute values A1,...,Ad)
• Based on the notion of dominance

§ Tuple t dominates tuple s, indicated t ≺ s, iff
• ∀i. 1≤i≤d → t[Ai] ≤ s[Ai] (t is nowhere worse than s)
• ∃j. 1≤j≤d ∧ t[Aj] < s[Aj] (and better at least once)

§ The skyline of a relation r is the set of non-dominated tuples

§ In 2D, the shape resembles the contour
of the dataset (hence the name)

§ Skylines are agnostic wrt user
preferences



Skylines – wrap-up

§ Effective in identifying potentially interesting objects if nothing 
is known about the preferences of a user

§ Very simple to use (no parameters needed!)

§ Too many objects for large, anti-correlated datasets

§ Computation is essentially quadratic in the size of the dataset 
(and thus not so efficient)

§ Can’t leverage known user preferences wrt attributes (e.g., 
price is more important than distance)



The lexicographical approach

§ Used in multi-objective optimization:
• find objects that are good according to several different 

perspectives (e.g., attribute values A1,...,Ad)
• a strict priority among different attributes is established

§ Point of view too narrow:
• linear priority between attributes
• even the smallest difference in the most important attribute can 

never be compensated by the other attributes

§ Prioritized skylines:
• combination of skylines with the lexicographic approach
• aim: reducing the size of the result
• no trade-off between attributes possible
• still no explicit control on the result cardinality



Comparing different approaches

Ranking queries Lexicographic 
approach

Skyline queries

Simplicity No Yes Yes
Overall view of 
interesting results

No No Yes

Control of 
cardinality

Yes Yes No

Trade-off among 
attributes

Yes No No

Relative 
importance of 
attributes

Yes Yes No



  

Restricted skylines



Skylines, revisited

§ Two equivalent points of view:
• Non-dominated tuples:

• Tuples optimal according to a monotone scoring function:

(M is the set of all monotone scoring functions)

attribute Ai; t is also written as hv1, . . . , vdi, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t � s, if
(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj ] < s[Aj ]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A scor-
ing function f is a function f : [0, 1]d ! R+. For a tuple
t = hv1, . . . , vdi over R, the value f(v1, . . . , vd) is called the
score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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Restricted skylines

§ A combination (or, better, reconciliation) of skyline and ranking 
queries
• Take into account different importance of different attributes, 

without a strict priority as in the lexicographic approach
• Allow a family of scoring functions F instead of a single one to 

characterize the interesting objects
– F is possibly specified by means of constraints on the weights

• Notion of dominance generalized to F-dominance

§ For a set of monotone functions F, [0,1]d→R+, tuple t F-
dominates tuple s<>t, denoted by t ≺F s, iff, ∀f∈F. f(t)≤f(s)

§ Observe that, when F is the set of all monotonic functions M, 
then ≺F coincides with standard dominance ≺

§ Idea: generalize the two views of skylines when F ⊆ M



ND-Sky and PO-Sky

§ Skyline as non-dominated tuples:

§ Non-Dominated Skyline (ND-Sky) :

§ Skyline as tuples optimal wrt a monotone scoring function:

§ Potentially Optimal Skyline (PO-Sky):

attribute Ai; t is also written as hv1, . . . , vdi, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t � s, if
(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj ] < s[Aj ]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A scor-
ing function f is a function f : [0, 1]d ! R+. For a tuple
t = hv1, . . . , vdi over R, the value f(v1, . . . , vd) is called the
score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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Restricted skylines - example

§ Sky returns C1, C2, C4, C6, C7
• C3 dominated by C2 and C5 by C4

§ Consider

§ ND-Sky returns C1, C2, C4
• C6 and C7 are F-dominated by C4

§ PO-Sky returns C1, C4
• No allowed combination of weights can make C2 the top car

CarID Price (⇥103) Mileage (⇥103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5

Table 2: The UsedCars relation.

to some function in F . While nd-Sky and po-Sky coincide
and capture the traditional skyline when F is the family of
all monotone scoring functions, their behaviors di↵er when
subsets thereof are considered. R-skylines capture in a single
framework all the practically relevant approaches to multi-
objective optimization, traditionally dealt with separately,
and enable the study of other scenarios of practical inter-
est. For example, in multicriteria analysis, decision makers
may encounter objectives in which the model parameters
lack completeness or confidence, and are characterized by
complex preferences between, e.g., attribute weights, such
as “attribute C is more important than attribute A, but no
more than twice as important” [18]. Other complex con-
straints characterizing the objective might come from pref-
erence elicitation from a crowd (see, e.g., [5] and references
therein for strategies for collecting preferences between tu-
ples).

Example 1. For the relation UsedCars(ID,Price,Mileage)
in Table 2, a skyline query over the attributes Price and
Mileage (both to be minimized) will return cars C1, C2,
C4, C6, and C7. Now assume that your preferences con-
sider Price more important than Mileage (in which case a
p-skyline query would just return car C1, since it has the
minimum price). By considering the family of scoring func-
tions F = {wP Price + wMMileage | wP � wM}, nd-Sky,
i.e., the set of non-F-dominated cars, includes C1, C2, and
C4, with only C1 and C4 being also part of po-Sky. Al-
though in the skyline, both C6 and C7 are F-dominated by
C4, which is reasonable since they both have a relatively high
price. On the other hand, car C2 is non-F-dominated, yet
there is no combination of weights values that can make it a
top-1 result.

The main contributions of this paper are as follows.
1. We introduce two operators generalizing both skyline

and ranking queries.
2. We study the properties of these operators, called R-

skylines, and in particular their relationship with skyline
and top-1 queries, as well as their behavior as the set F of
scoring functions under consideration varies.

3. We study the application of R-skylines when the scor-
ing functions in F are Lp norms or, generally, functions that
are linear in the weights (or monotonic transforms thereof).

4. We discuss two alternative approaches to computing
R-skylines based on Linear Programming, one addressing a
direct F-dominance test between tuples, the other charac-
terizing the “dominance region” wrt. F of a tuple.

5. We evaluate the e↵ectiveness of R-skylines (i.e., their
ability to restrict the set of tuples of interest) in a number
of di↵erent experimental settings including synthetic as well
as real datasets; we also discuss di↵erent implementations
of the operators and test their e�ciency in the di↵erent sce-
narios.

Related work. Due to the limits that each of the basic
methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily find-
ing interesting results in large datasets.
Several techniques have been proposed for reducing the

skyline size, a recent survey of which can be found in [11].
Among them, distance-based representative skylines [20] aim
to determine the k tuples in the skyline for which the max-
imum distance to the excluded skyline points is minimized.
Since this problem is NP-hard, only approximate solutions
can be provided. Furthermore, the method is also sensitive
to the specific metric used to measure distance among tu-
ples. Another approach to select a limited subset of skyline
tuples is to assign to each of them a measure of interesting-
ness based on some specific properties. Top-k Representa-
tive Skyline Points (RSP) [10] are the k skyline points that
together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more
dimensions, thus approximate solutions are adopted in prac-
tice. Top-k dominating queries [21] return the k tuples that
dominate the highest number of tuples in the dataset, i.e.,
they rank tuples according to the number of other tuples
they dominate. Besides the high computational cost in-
curred by this approach if the input dataset is not indexed, a
major drawback is that the score of a tuple depends on how
worse tuples are distributed, a problem that this method
shares with top-k RSP.
Among the methods that only rely on the order proper-

ties of skylines, i.e., without any reference to the actual un-
derlying attribute domains (which can consequently also be
categorical), we mention p-skylines and trade-o↵ skylines.
P-skyline (or Prioritized skyline) queries [14] are a gener-
alization of skyline queries in which the user can specify
that some attributes are more important than others, by re-
specting the syntax of so-called p-expressions. In practice, a
p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the
size of the result, p-skylines usually contain many fewer tu-
ples than skylines. P-skylines can be e�ciently computed
by taking advantage of the reduced cardinality of the result,
i.e., with an output-sensitive algorithm [13]. The idea of
trade-o↵ skylines [12] is similar to the one we adopt in this
paper. However, while we consider numerical domains and
consequently numerical trade-o↵s, [12] adopts the view of
qualitative trade-o↵s. Although the latter has the advan-
tage of being also applicable to categorical attributes, the
price to be paid is increased computational complexity.
Somehow related to what we study in this paper are those

works on top-k queries in which the scoring function is not
univocally defined, e.g., [22, 16]. Along these lines, [19] stud-
ies representative orderings (such as the most probable or-
dering) and their stability wrt. a change of parameters, by
assuming that the set of parameters (weights) is a random
variable with a uniform distribution.

2. PRELIMINARIES

Consider a relational schema R(A1, . . . , Ad), with d � 1.
Without loss of generality, we assume that the domain of
each attribute Ai is [0, 1], since each numeric domain could
be normalized in this interval. In this paper, we consider
lower values to be better than higher ones, but the opposite
convention would of course also be possible. A tuple t over
R is a function that associates a value vi in [0, 1] with each
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CarID Price (⇥103) Mileage (⇥103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5

Table 2: The UsedCars relation.
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Restricted skylines – example from a real dataset
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Basic properties

§ Everything collapses to Sky, when F=M

§ Otherwise there is an inclusion relationship:

§ Smaller sets of functions determine smaller result sets

      for F1⊆F2

§ Note that sets of functions may be determined by constraints 
on weights

3.1 Basic Properties

In the following we present basic facts about nd-Sky and
po-Sky, and further investigate their relationship with Sky.

As a direct consequence of the definitions, we observe that,
when the set F of scoring functions under consideration co-
incides with M, the following holds:

po-Sky(r;M) = nd-Sky(r;M) = Sky(r). (7)

In general, though, there is a containment relationship, as
indicated in Proposition 1 below.

Proposition 1. For any set F of monotone scoring func-
tions, the following holds:

po-Sky(r;F) ✓ nd-Sky(r;F) ✓ Sky(r). (8)

Proof. We first observe that nd-Sky(r;F) ✓ nd-Sky(r;M)
follows from Equation (5), since F ✓ M entails �M✓�F .
By transitivity with Equation (7), we obtain nd-Sky(r;F) ✓
Sky(r).

Take now any tuple t 2 po-Sky(r;F). According to Defi-
nition 6, there exists a scoring function f 2 F such that f(t)
is lower than the score of any other tuple in r. Therefore,
there cannot be any tuple in r that F-dominates t in the
sense of Definition 4, because for at least function f , t would
achieve a better score. Therefore, t is not F-dominated, and
therefore t 2 nd-Sky(r;F) according to Definition 5. This
proves that po-Sky(r;F) ✓ nd-Sky(r;F).

We also observe that nd-Sky and po-Sky are monotone
operators with respect to the set of scoring functions, as
specified in Proposition 2 below.

Proposition 2. For any two sets F1 and F2 of mono-
tone scoring functions such that F1 ✓ F2, the following
holds:

nd-Sky(r;F1) ✓ nd-Sky(r;F2), (9)

po-Sky(r;F1) ✓ po-Sky(r;F2). (10)

Proof. Inequality (9) follows from Equation (5) by observing
that F1 ✓ F2 entails �F2✓�F1 . Inequality (10) is a direct
consequence of Definition 6.

A case of practical relevance is when one starts with a set
F of scoring functions and adds some constraints on the
way they are defined. A notable example is that of func-
tions characterized by parameters such as weights. To this
end, let W be the set of all normalized weight vectors, i.e.,
W ✓ [0, 1]d and, for each W = (w1, . . . , wd) 2 W, we havePd

i=1 wi = 1. Let C be a, possibly empty, set of (linear)
constraints on weights, and denote with W(C) the subset of
W that satisfies C, i.e.,: W(C) = {W 2 W | C(W ) = true}.
If F is a set of functions with parameters w1, . . . , wd, we
denote by F

C the set of functions obtained from set F by
imposing the set of constraints C. Henceforth, we always
assume that C is not contradictory, i.e., W(C) 6= ;, and that
the application of C leads to a non-empty set of functions,
i.e., FC

6= ;.

Corollary 1. For any set F of monotone functions and
sets of constraints C1 and C2 such that W(C1) ✓ W(C2), the
following holds:

nd-Sky(r;FC1) ✓ nd-Sky(r;FC2), (11)

po-Sky(r;FC1) ✓ po-Sky(r;FC2). (12)

(a) Tuples and F-dominance

region (in gray).

(b) Tuples from Example 3 in

[0, 1]d, d = 2. F-dominance re-

gion in gray.

Figure 1: Example 3 – tuples and weights in [0, 1]d, d = 2, C = {w1 �
w2}, F = LC

1 , where L1 is the set of monotone scoring functions that

are weighted sums of attribute values.

Proof. The proof follows directly from Proposition 2, since
F

C1 ✓ F
C2 , having assumed W(C1) ✓ W(C2).

We now define the F-dominance region of a tuple t.

Definition 7. The F-dominance region DR(t;F) of a
tuple t under a set F of monotone scoring functions is the
set of all points in [0, 1]d that are F-dominated by t:

DR(t;F) = {s 2 [0, 1]d | t �F s}. (13)

A consequence of Definition 7 is that the F-dominance re-
gion grows larger for smaller sets of functions, as specified
in Corollary 2 below.

Corollary 2. For any tuple t over R and any two sets
F1 and F2 of monotone scoring functions such that F1 ✓ F2,
the following holds:

DR(t;F1) ◆ DR(t;F2). (14)

Proof. Inequality (14) follows from Definition 7 by observing
that F1 ✓ F2 entails �F2✓�F1 .

We now illustrate Proposition 1 and Definition 7 with the
following Example.

Example 3. Let L1 be the set of all the linear scoring
functions of the form f(x, y) = w1x+ w2y and let F = L

C
1 ,

where C = {w1 � w2}. Consider tuples t1 = h0.3, 0.6i, t2 =
h0.4, 0.45i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i, and instance r =
{t1, t2, t3, t4}, shown in Figure 1a. We have po-Sky(r;F) =
{t1, t3} ✓ nd-Sky(r;F) = {t1, t2, t3} ✓ Sky(r) = r.
To see this, first observe that no tuple in r dominates any

other tuple in r, and therefore Sky(r) = r. However, we
note that t3 �F t4: indeed, checking whether f(t3)  f(t4)
amounts to checking whether w1(0.5�0.6)  w2(0.15�0.2),
which is always true in F , since w1 � w2. Therefore t4 /2
nd-Sky(r;F). To further emphasize this, Figure 1a shows
in gray the region of [0, 1]d whose points (including tuple
t4) are F-dominated by some tuple in r, i.e., [t2rDR(t;F),
whereas Figure 1b shows in gray the region of normalized
weights such that w1 � w2. The computation of such regions
will be studied in depth in Section 4.1.
Finally, with linear scoring functions, as is well known [19],

top-1 tuples can only lie in the boundary of the convex hull
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h0.4, 0.45i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i, and instance r =
{t1, t2, t3, t4}, shown in Figure 1a. We have po-Sky(r;F) =
{t1, t3} ✓ nd-Sky(r;F) = {t1, t2, t3} ✓ Sky(r) = r.
To see this, first observe that no tuple in r dominates any

other tuple in r, and therefore Sky(r) = r. However, we
note that t3 �F t4: indeed, checking whether f(t3)  f(t4)
amounts to checking whether w1(0.5�0.6)  w2(0.15�0.2),
which is always true in F , since w1 � w2. Therefore t4 /2
nd-Sky(r;F). To further emphasize this, Figure 1a shows
in gray the region of [0, 1]d whose points (including tuple
t4) are F-dominated by some tuple in r, i.e., [t2rDR(t;F),
whereas Figure 1b shows in gray the region of normalized
weights such that w1 � w2. The computation of such regions
will be studied in depth in Section 4.1.
Finally, with linear scoring functions, as is well known [19],

top-1 tuples can only lie in the boundary of the convex hull
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F-dominance regions

§ The F-dominance region of t
• set of all points F-dominated by t

§ Example: linear scoring functions, weights w1 and w2, w1 ≥ w2

• All are in Sky
• t4 is not in ND-Sky (F-dominated by t3) and thus not in PO-Sky
• t2 is not in PO-Sky (no allowed linear function can make it top)

3.1 Basic Properties

In the following we present basic facts about nd-Sky and
po-Sky, and further investigate their relationship with Sky.

As a direct consequence of the definitions, we observe that,
when the set F of scoring functions under consideration co-
incides with M, the following holds:

po-Sky(r;M) = nd-Sky(r;M) = Sky(r). (7)

In general, though, there is a containment relationship, as
indicated in Proposition 1 below.

Proposition 1. For any set F of monotone scoring func-
tions, the following holds:

po-Sky(r;F) ✓ nd-Sky(r;F) ✓ Sky(r). (8)

Proof. We first observe that nd-Sky(r;F) ✓ nd-Sky(r;M)
follows from Equation (5), since F ✓ M entails �M✓�F .
By transitivity with Equation (7), we obtain nd-Sky(r;F) ✓
Sky(r).

Take now any tuple t 2 po-Sky(r;F). According to Defi-
nition 6, there exists a scoring function f 2 F such that f(t)
is lower than the score of any other tuple in r. Therefore,
there cannot be any tuple in r that F-dominates t in the
sense of Definition 4, because for at least function f , t would
achieve a better score. Therefore, t is not F-dominated, and
therefore t 2 nd-Sky(r;F) according to Definition 5. This
proves that po-Sky(r;F) ✓ nd-Sky(r;F).

We also observe that nd-Sky and po-Sky are monotone
operators with respect to the set of scoring functions, as
specified in Proposition 2 below.

Proposition 2. For any two sets F1 and F2 of mono-
tone scoring functions such that F1 ✓ F2, the following
holds:

nd-Sky(r;F1) ✓ nd-Sky(r;F2), (9)

po-Sky(r;F1) ✓ po-Sky(r;F2). (10)

Proof. Inequality (9) follows from Equation (5) by observing
that F1 ✓ F2 entails �F2✓�F1 . Inequality (10) is a direct
consequence of Definition 6.

A case of practical relevance is when one starts with a set
F of scoring functions and adds some constraints on the
way they are defined. A notable example is that of func-
tions characterized by parameters such as weights. To this
end, let W be the set of all normalized weight vectors, i.e.,
W ✓ [0, 1]d and, for each W = (w1, . . . , wd) 2 W, we havePd

i=1 wi = 1. Let C be a, possibly empty, set of (linear)
constraints on weights, and denote with W(C) the subset of
W that satisfies C, i.e.,: W(C) = {W 2 W | C(W ) = true}.
If F is a set of functions with parameters w1, . . . , wd, we
denote by F

C the set of functions obtained from set F by
imposing the set of constraints C. Henceforth, we always
assume that C is not contradictory, i.e., W(C) 6= ;, and that
the application of C leads to a non-empty set of functions,
i.e., FC

6= ;.

Corollary 1. For any set F of monotone functions and
sets of constraints C1 and C2 such that W(C1) ✓ W(C2), the
following holds:

nd-Sky(r;FC1) ✓ nd-Sky(r;FC2), (11)

po-Sky(r;FC1) ✓ po-Sky(r;FC2). (12)
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(a) Tuples and F-dominance

region (in gray).

(b) Tuples from Example 3 in

[0, 1]d, d = 2. F-dominance re-

gion in gray.

Figure 1: Example 3 – tuples and weights in [0, 1]d, d = 2, C = {w1 �
w2}, F = LC

1 , where L1 is the set of monotone scoring functions that

are weighted sums of attribute values.

Proof. The proof follows directly from Proposition 2, since
F

C1 ✓ F
C2 , having assumed W(C1) ✓ W(C2).

We now define the F-dominance region of a tuple t.

Definition 7. The F-dominance region DR(t;F) of a
tuple t under a set F of monotone scoring functions is the
set of all points in [0, 1]d that are F-dominated by t:

DR(t;F) = {s 2 [0, 1]d | t �F s}. (13)

A consequence of Definition 7 is that the F-dominance re-
gion grows larger for smaller sets of functions, as specified
in Corollary 2 below.

Corollary 2. For any tuple t over R and any two sets
F1 and F2 of monotone scoring functions such that F1 ✓ F2,
the following holds:

DR(t;F1) ◆ DR(t;F2). (14)

Proof. Inequality (14) follows from Definition 7 by observing
that F1 ✓ F2 entails �F2✓�F1 .

We now illustrate Proposition 1 and Definition 7 with the
following Example.

Example 3. Let L1 be the set of all the linear scoring
functions of the form f(x, y) = w1x+ w2y and let F = L

C
1 ,

where C = {w1 � w2}. Consider tuples t1 = h0.3, 0.6i, t2 =
h0.4, 0.45i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i, and instance r =
{t1, t2, t3, t4}, shown in Figure 1a. We have po-Sky(r;F) =
{t1, t3} ✓ nd-Sky(r;F) = {t1, t2, t3} ✓ Sky(r) = r.
To see this, first observe that no tuple in r dominates any

other tuple in r, and therefore Sky(r) = r. However, we
note that t3 �F t4: indeed, checking whether f(t3)  f(t4)
amounts to checking whether w1(0.5�0.6)  w2(0.15�0.2),
which is always true in F , since w1 � w2. Therefore t4 /2
nd-Sky(r;F). To further emphasize this, Figure 1a shows
in gray the region of [0, 1]d whose points (including tuple
t4) are F-dominated by some tuple in r, i.e., [t2rDR(t;F),
whereas Figure 1b shows in gray the region of normalized
weights such that w1 � w2. The computation of such regions
will be studied in depth in Section 4.1.
Finally, with linear scoring functions, as is well known [19],

top-1 tuples can only lie in the boundary of the convex hull
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3.1 Basic Properties

In the following we present basic facts about nd-Sky and
po-Sky, and further investigate their relationship with Sky.

As a direct consequence of the definitions, we observe that,
when the set F of scoring functions under consideration co-
incides with M, the following holds:

po-Sky(r;M) = nd-Sky(r;M) = Sky(r). (7)

In general, though, there is a containment relationship, as
indicated in Proposition 1 below.

Proposition 1. For any set F of monotone scoring func-
tions, the following holds:

po-Sky(r;F) ✓ nd-Sky(r;F) ✓ Sky(r). (8)

Proof. We first observe that nd-Sky(r;F) ✓ nd-Sky(r;M)
follows from Equation (5), since F ✓ M entails �M✓�F .
By transitivity with Equation (7), we obtain nd-Sky(r;F) ✓
Sky(r).

Take now any tuple t 2 po-Sky(r;F). According to Defi-
nition 6, there exists a scoring function f 2 F such that f(t)
is lower than the score of any other tuple in r. Therefore,
there cannot be any tuple in r that F-dominates t in the
sense of Definition 4, because for at least function f , t would
achieve a better score. Therefore, t is not F-dominated, and
therefore t 2 nd-Sky(r;F) according to Definition 5. This
proves that po-Sky(r;F) ✓ nd-Sky(r;F).

We also observe that nd-Sky and po-Sky are monotone
operators with respect to the set of scoring functions, as
specified in Proposition 2 below.

Proposition 2. For any two sets F1 and F2 of mono-
tone scoring functions such that F1 ✓ F2, the following
holds:

nd-Sky(r;F1) ✓ nd-Sky(r;F2), (9)

po-Sky(r;F1) ✓ po-Sky(r;F2). (10)

Proof. Inequality (9) follows from Equation (5) by observing
that F1 ✓ F2 entails �F2✓�F1 . Inequality (10) is a direct
consequence of Definition 6.

A case of practical relevance is when one starts with a set
F of scoring functions and adds some constraints on the
way they are defined. A notable example is that of func-
tions characterized by parameters such as weights. To this
end, let W be the set of all normalized weight vectors, i.e.,
W ✓ [0, 1]d and, for each W = (w1, . . . , wd) 2 W, we havePd

i=1 wi = 1. Let C be a, possibly empty, set of (linear)
constraints on weights, and denote with W(C) the subset of
W that satisfies C, i.e.,: W(C) = {W 2 W | C(W ) = true}.
If F is a set of functions with parameters w1, . . . , wd, we
denote by F

C the set of functions obtained from set F by
imposing the set of constraints C. Henceforth, we always
assume that C is not contradictory, i.e., W(C) 6= ;, and that
the application of C leads to a non-empty set of functions,
i.e., FC

6= ;.

Corollary 1. For any set F of monotone functions and
sets of constraints C1 and C2 such that W(C1) ✓ W(C2), the
following holds:

nd-Sky(r;FC1) ✓ nd-Sky(r;FC2), (11)

po-Sky(r;FC1) ✓ po-Sky(r;FC2). (12)
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(b) Tuples from Example 3 in

[0, 1]d, d = 2. F-dominance re-

gion in gray.

Figure 1: Example 3 – tuples and weights in [0, 1]d, d = 2, C = {w1 �
w2}, F = LC

1 , where L1 is the set of monotone scoring functions that

are weighted sums of attribute values.

Proof. The proof follows directly from Proposition 2, since
F

C1 ✓ F
C2 , having assumed W(C1) ✓ W(C2).

We now define the F-dominance region of a tuple t.

Definition 7. The F-dominance region DR(t;F) of a
tuple t under a set F of monotone scoring functions is the
set of all points in [0, 1]d that are F-dominated by t:

DR(t;F) = {s 2 [0, 1]d | t �F s}. (13)

A consequence of Definition 7 is that the F-dominance re-
gion grows larger for smaller sets of functions, as specified
in Corollary 2 below.

Corollary 2. For any tuple t over R and any two sets
F1 and F2 of monotone scoring functions such that F1 ✓ F2,
the following holds:

DR(t;F1) ◆ DR(t;F2). (14)

Proof. Inequality (14) follows from Definition 7 by observing
that F1 ✓ F2 entails �F2✓�F1 .

We now illustrate Proposition 1 and Definition 7 with the
following Example.

Example 3. Let L1 be the set of all the linear scoring
functions of the form f(x, y) = w1x+ w2y and let F = L

C
1 ,

where C = {w1 � w2}. Consider tuples t1 = h0.3, 0.6i, t2 =
h0.4, 0.45i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i, and instance r =
{t1, t2, t3, t4}, shown in Figure 1a. We have po-Sky(r;F) =
{t1, t3} ✓ nd-Sky(r;F) = {t1, t2, t3} ✓ Sky(r) = r.
To see this, first observe that no tuple in r dominates any

other tuple in r, and therefore Sky(r) = r. However, we
note that t3 �F t4: indeed, checking whether f(t3)  f(t4)
amounts to checking whether w1(0.5�0.6)  w2(0.15�0.2),
which is always true in F , since w1 � w2. Therefore t4 /2
nd-Sky(r;F). To further emphasize this, Figure 1a shows
in gray the region of [0, 1]d whose points (including tuple
t4) are F-dominated by some tuple in r, i.e., [t2rDR(t;F),
whereas Figure 1b shows in gray the region of normalized
weights such that w1 � w2. The computation of such regions
will be studied in depth in Section 4.1.
Finally, with linear scoring functions, as is well known [19],

top-1 tuples can only lie in the boundary of the convex hull
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F-dominance regions

§ The F-dominance region of t
• set of all points F-dominated by t

§ Example: quadratic functions with w1 + w2 ≥ w3

• t’ is not in the F-dominance region of t
– and thus not F-dominated by it

the cost of the most expensive component (i.e., vertex enu-
meration of a polytope) of the calculation of F-dominance
regions has to be paid just once for all tuples.

In order to compute DR(t;LC
p), a fundamental observa-

tion is that, for any set C of linear constraints on weights,
W(C) is a convex polytope contained in the standard (or
unit) (d� 1)-simplex.1 We have the following major result.

Theorem 8 (F-dominance region). Let p 2 N and
C = {C1, . . . , Cc} be a set of linear constraints on weights,
where Cj =

Pd
i=1 ajiwi  kj (j 2 {1, . . . , c}). Let W (1), . . . ,W (q)

be the vertices of W(C). The dominance region DR(t;LC
p)

of a tuple t under L
C
p is the locus of points s defined by the

q inequalities:

dX

i=1

w(`)
i s[Ai]

p
�

dX

i=1

w(`)
i t[Ai]

p, ` 2 {1, . . . , q}. (20)

Proof. Since W(C) is convex, any W 2 W(C) can be written
as a convex combination of the vertices, i.e., W =

P
` b`W

(`),
with b` � 0, ` 2 {1, . . . , q}, and

P
` b` = 1, from which the

result immediately follows.

As a direct consequence of Definition 7, DR(t;F) is a closed
region.

Example 9. Let d = 2, p = 1, and consider tuples t1 =
h0.3, 0.6i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i from Example 3.
For C = {w1 � w2} and considering that w1 + w2 = 1 and
0  w1, w2  1, the vertices of W(C) are W (1) = (1, 0) and
W (2) = (0.5, 0.5). Figure 1a shows the tuples along with
their L

C
1 -dominance regions, while Figure 1b shows W(C).

By Theorem 8, DR(t3;L
C
1 ) is characterized by the system of

inequalities:

{s[A1] � 0.5, s[A1] + s[A2] � 0.7}. (21)

Tuple t4 satisfies (21) and thus t3 �LC
1
t4. For tuple t1, the

system becomes:

{s[A1] � 0.3, s[A1] + s[A2] � 0.9}. (22)

Here, t4 does not satisfy (22) and therefore t1 6�LC
1
t4.

As Example 9, Figure 1a and Inequalities (20) suggest, the
“shape” of DR(t;LC

p) (modulo cropping in the [0, 1]d hy-
percube) is independent of t, since the left-hand sides are
the same and the right-hand sides are, for any given t, a
constant.

Example 10. For a non-linear example, let d = 3, p =
2, and C = {w1 + w2 � w3}. The vertices of W(C) are:
W (1) = h1, 0, 0i, W (2) = h0, 1, 0i, W (3) = h0.5, 0, 0.5i, and
W (4) = h0, 0.5, 0.5i. For t = h0.5, 0.5, 0.5i, DR(t;LC

2 ) is
characterized by:

{ s[A1]
2
� 0.25, s[A2]

2
� 0.25,

s[A1]
2 + s[A3]

2
� 0.5, s[A2]

2 + s[A3]
2
� 0.5 }.

(23)

Therefore, tuple t0 = h0.7, 0.5, 0.3i is not L
C
2 -dominated by

t, as the last inequality in (23) is not satisfied. See Figure 2
for a graphical representation.
1Note that the standard (d � 1)-simplex is a (d � 1)-
dimensional region in Rd.

(a) F-dominance region

DR(t,F).

(b) W(C) (in gray) on the 2-

simplex.

Figure 2: Example 10 – tuples and weights in [0, 1]d, d = 3, C =

{w1 � w2}, F = LC
2 .

The only significant overhead introduced by this approach
is the enumeration of the vertices of W(C). However, due
to the above observation, this has to be done just once.
For any fixed value of d, the number of vertices is at most
O(cbd/2c), where c is the number of constraints, but there
exists polytopes with as few as O(c1/bd/2c) vertices [9]. The
vertex enumeration problem is NP-hard in general and it is
not known whether for the special case of bounded polytopes
(like W(C)) an algorithm exists with PTIME input-output
complexity; yet, a PTIME algorithm can be used in simpler
cases [1].
As with Theorem 7, even Theorem 8 also holds for the

family of linear functions wrt. the weights.

4.2 Computing potentially optimal tuples

We observe that, for any set F , po-Sky(r;F) can be com-
puted starting from nd-Sky(r;F) by retaining only the tu-
ples that are not F-dominated by any “virtual” tuple ob-
tained by combining other tuples in nd-Sky(r;F). When F

belongs to the L
C
p family with linear constraints C, this can

be done again e�ciently by solving an LP problem.

Theorem 11 (Potential optimality test). Let p be
a finite positive integer, C a set of linear constraints on
weights. Let W (1), . . . ,W (q) be the vertices of W(C) and let
nd-Sky(r;LC

p) = {t1, t2, . . . , t�, t}. Then, t 2 po-Sky(r;LC
p)

i↵ there is no convex combination s of {t1, . . . , t�} such that
s �LC

p
t, i.e., i↵ the following linear system in the unknowns

↵ = (↵1, . . . ,↵�) is unsatisfiable:

Pd
i=1 w

(`)
i (

P�
j=1 ↵jtj [Ai]

p) 
Pd

i=1 w
(`)
i t[Ai]

p

` 2 {1, . . . , q} (24)

↵j 2 [0, 1] j 2 {1, . . . ,�}
P�

i=1 ↵j = 1.

Proof. (Sketch) Let t 2 po-Sky(r;LC
p) and assume that the

above system is satisfiable with ↵⇤ = (↵⇤
1, . . . ,↵

⇤
�). By hy-

pothesis, there exists W 2 W(C) such that
Pd

i=1 wit[Ai]
p <Pd

i=1 witj [Ai]
p, j 2 {1, . . . ,�}. This implies that, 8� =

(�1, . . . ,��), �j 2 [0, 1], j 2 {1, . . . ,�},
P�

j=1 �j = 1, it is

also
Pd

i=1 wit[Ai]
p <

Pd
i=1 wi(

P�
j=1 �jtj [Ai]

p). By taking
� = ↵⇤ we derive a contradiction after observing, as in the
proof of Theorem 8, that any W 2 W(C) can be written as
a convex combination of the vertices of the polytope.
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Lp Norms

§ Common scoring functions are characterized by a weight
vector W=(w1,…,wd):

§ thus defining a family of scoring functions:

§ For these functions, the F-dominance test t ≺F s can be 
checked in two ways:
1. by solving a linear program, or
2. by checking if s is in the F-dominance region of t

§ The second approach is simpler, but requires computing the 
vertices of a polytope (vertex enumeration problem)

of the F-dominated region, thus t2 /2 po-Sky(r;F). In-
deed, there is no function f 2 F for which both f(t2) <
f(t1) and f(t2) < f(t3), as there are no w1, w2 such that
w1(0.4�0.3) < w2(0.6�0.45), w1(0.4�0.5) < w2(0.2�0.45),
and w1 � w2 all hold.

4. RESTRICTED SKYLINES ANDLP NORMS

A practically relevant case to consider is that of the weighted
Lp norms, defined as follows, where W = (w1, . . . , wd) 2 W

is a normalized weight vector:

LW
p (t) =

 
dX

i=1

wit[Ai]
p

!1/p

, p 2 N. (15)

We therefore turn our attention to the case in which the set
of monotone scoring functions coincides with the family Lp

of weighted Lp norms:

Lp = {LW
p | W 2 W}, p 2 N. (16)

The behaviors of nd-Sky and po-Sky are radically di↵er-
ent under Lp.

Theorem 4. For every value of p and every r,
nd-Sky(r;Lp) = Sky(r).

Proof. By Proposition 1, it follows that nd-Sky(r;Lp) ✓

Sky(r). Now we also need to show that every tuple t 2

Sky(r) also belongs to nd-Sky(r;Lp). We know that @s 2

r. s � t, and assume, by contradiction, that 9s 2 r. s �Lp t,
with s 6= t. Therefore, 8f 2 Lp. f(s)  f(t). Now, let us

indicate with W (i) = (w(i)
1 , . . . , w(i)

d ) 2 W the weight vector

such that w(i)
i = 1 and, for j 6= i, w(i)

j = 0. Since s �Lp t,

we must have LW (i)

p (s)  LW (i)

p (t) for 1  i  d, i.e., we
must have s[Ai]  t[Ai] for 1  i  d, which entails s � t
since t 6= s. Contradiction.

Thus, any Lp family is “powerful enough” to reveal all sky-
line points with nd-Sky. However, this does not hold for
po-Sky, as indicated in the following theorems.

Theorem 5. Let p < p0, with p, p0 2 N. Then, for every
r we have:

po-Sky(r;Lp) ✓ po-Sky(r;Lp0). (17)

Proof. (Sketch) Let t be a tuple in po-Sky(r;Lp). Then t
minimizes an LW

p norm for some weight vectorW = (w1, . . . , wd).
Consider the region Sp (which includes only t among the tu-
ples in r) defined by the inequalities

Pd
i=1 wix

p
i 

Pd
i=1 wit[Ai]

p

and xi � 0 (for i 2 {1, . . . , d}). The region Sp0 defined by
Pd

i=1 w
0
ix

p0

i 
Pd

i=1 w
0
it[Ai]

p0 and xi � 0 (for i 2 {1, . . . , d}),
with W 0 = (w0

1, . . . , w
0
d) chosen so that the boundary of Sp0

is tangent in t to the boundary of Sp, is strictly enclosed in

Sp. This implies that Sp0 \ r = {t}, thus LW 0
p0 (t) < LW 0

p0 (s)
holds for all s 2 r, s 6= t. Then, t 2 po-Sky(r;Lp0).

Theorem 6. For each p 2 N, there exists a relation r
such that

po-Sky(r;Lp) ⇢ Sky(r). (18)

Proof. (Sketch) To prove the claim, assume d = 2 and con-
sider an instance r = {t1, t2, t}, with t1 = h1, 0i, t2 = h0, 1i,
t = h1 � ✏, 1 � ✏i, where 0 < ✏ < 1. Clearly, Sky(r) = r,
since no tuple in r is dominated by any other tuple in r.
Now, for every p 2 N, we can choose a value of ✏ such that
t /2 po-Sky(r;Lp). Indeed, for t to be in po-Sky(r;Lp),
there needs to be a vector of weights W = (w1, w2) 2 W

such that LW
p (t) < LW

p (t1) and LW
p (t) < LW

p (t2), i.e.,

((1� ✏)pw1 + (1� ✏)pw2)
1/p < w1/p

1 ,

((1� ✏)pw1 + (1� ✏)pw2)
1/p < w1/p

2 ,

which reduces to w2
(1�✏)p

1�(1�✏)p < w1 < w2
1�(1�✏)p

(1�✏)p . But this

condition can never hold if (1�✏)p

1�(1�✏)p > 1�(1�✏)p

(1�✏)p , which hap-

pens for ✏ < 1� 1
21/p

.
A similar argument holds when d > 2 by considering a

relation r = {t1, . . . , td, t} where t = h1 � ✏, . . . , 1 � ✏i and,
for 1  i  d, ti[Ai] = 1 and, for j 6= i, ti[Aj ] = 0.

The results of Theorems 4, 5 and 6, together with the
observation of Corollary 2, suggest that, by imposing some
constraints C on the weights, one can use any Lp family to
move from the full skyline (when C = ;) to top-1 queries
(when W(C) amounts to a single weight vector).

4.1 Checking F-Dominance for Lp norms

In order to better understand the notion of F-dominance,
we focus on the case F = L

C
p , where C are linear constraints

on the weights, and show that the problem is in PTIME and
that its time complexity is independent of p.

Theorem 7 (F-dominance test). Let p be a finite pos-
itive integer and C = {C1, . . . , Cc} a set of linear constraints
on weights, where Cj =

Pd
i=1 ajiwi  kj (for j 2 {1, . . . , c}).

Then, t �LC
p
s i↵ the following linear programming problem

(LP) in the unknowns W = (w1, . . . , wd) has a non-negative
solution:

minimize
Pd

i=1 wi(s[Ai]
p
� t[Ai]

p) (19)

subject to wi 2 [0, 1] i 2 {1, . . . , d}
Pd

i=1 wi = 1
Pd

i=1 ajiwi  kj j 2 {1, . . . , c}.

Proof. Immediate from the definition of F-dominance for a
set F , since, for any weight vector W = (w1, . . . , wd), with
f = LW

p , we have f(s)p � f(t)p =
Pd

i=1 wi(s[Ai]
p
� t[Ai]

p),
and f(s)p � f(t)p has the same sign as f(s)� f(t).

Note that Theorem 7 has a validity that goes far beyond
L

C
p families, since it applies to any set F whose functions are

weighted sums of monotone functions of single attributes,
e.g.,

P
i wi log(1+ t[Ai]), and even monotonic transforms of

those, e.g., exp(
P

i wit[Ai]).
Computing nd-Sky(r;F) using Theorem 7 is likely to be

time-consuming, since a di↵erent LP problem needs to be
solved for each F-dominance test. An alternative approach
is to explicitly compute the F-dominance regions of tuples,
and then discard those tuples that belong to at least one
of such regions. The advantage of this approach is that the
computation of the F-dominance region of a tuple t needs
to be performed once, thus independently of how many F-
dominance tests involve t. Furthermore, as shown below,
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of the F-dominated region, thus t2 /2 po-Sky(r;F). In-
deed, there is no function f 2 F for which both f(t2) <
f(t1) and f(t2) < f(t3), as there are no w1, w2 such that
w1(0.4�0.3) < w2(0.6�0.45), w1(0.4�0.5) < w2(0.2�0.45),
and w1 � w2 all hold.

4. RESTRICTED SKYLINES ANDLP NORMS

A practically relevant case to consider is that of the weighted
Lp norms, defined as follows, where W = (w1, . . . , wd) 2 W

is a normalized weight vector:

LW
p (t) =

 
dX

i=1

wit[Ai]
p

!1/p

, p 2 N. (15)

We therefore turn our attention to the case in which the set
of monotone scoring functions coincides with the family Lp

of weighted Lp norms:

Lp = {LW
p | W 2 W}, p 2 N. (16)

The behaviors of nd-Sky and po-Sky are radically di↵er-
ent under Lp.

Theorem 4. For every value of p and every r,
nd-Sky(r;Lp) = Sky(r).

Proof. By Proposition 1, it follows that nd-Sky(r;Lp) ✓

Sky(r). Now we also need to show that every tuple t 2

Sky(r) also belongs to nd-Sky(r;Lp). We know that @s 2

r. s � t, and assume, by contradiction, that 9s 2 r. s �Lp t,
with s 6= t. Therefore, 8f 2 Lp. f(s)  f(t). Now, let us

indicate with W (i) = (w(i)
1 , . . . , w(i)

d ) 2 W the weight vector

such that w(i)
i = 1 and, for j 6= i, w(i)

j = 0. Since s �Lp t,

we must have LW (i)

p (s)  LW (i)

p (t) for 1  i  d, i.e., we
must have s[Ai]  t[Ai] for 1  i  d, which entails s � t
since t 6= s. Contradiction.
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po-Sky(r;Lp) ✓ po-Sky(r;Lp0). (17)

Proof. (Sketch) Let t be a tuple in po-Sky(r;Lp). Then t
minimizes an LW

p norm for some weight vectorW = (w1, . . . , wd).
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Pd
i=1 wix

p
i 

Pd
i=1 wit[Ai]

p

and xi � 0 (for i 2 {1, . . . , d}). The region Sp0 defined by
Pd

i=1 w
0
ix

p0

i 
Pd

i=1 w
0
it[Ai]

p0 and xi � 0 (for i 2 {1, . . . , d}),
with W 0 = (w0

1, . . . , w
0
d) chosen so that the boundary of Sp0

is tangent in t to the boundary of Sp, is strictly enclosed in

Sp. This implies that Sp0 \ r = {t}, thus LW 0
p0 (t) < LW 0

p0 (s)
holds for all s 2 r, s 6= t. Then, t 2 po-Sky(r;Lp0).

Theorem 6. For each p 2 N, there exists a relation r
such that

po-Sky(r;Lp) ⇢ Sky(r). (18)
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p (t) < LW

p (t1) and LW
p (t) < LW

p (t2), i.e.,

((1� ✏)pw1 + (1� ✏)pw2)
1/p < w1/p

1 ,

((1� ✏)pw1 + (1� ✏)pw2)
1/p < w1/p

2 ,

which reduces to w2
(1�✏)p

1�(1�✏)p < w1 < w2
1�(1�✏)p

(1�✏)p . But this

condition can never hold if (1�✏)p

1�(1�✏)p > 1�(1�✏)p

(1�✏)p , which hap-

pens for ✏ < 1� 1
21/p

.
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move from the full skyline (when C = ;) to top-1 queries
(when W(C) amounts to a single weight vector).
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we focus on the case F = L
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Then, t �LC
p
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p , we have f(s)p � f(t)p =
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p),
and f(s)p � f(t)p has the same sign as f(s)� f(t).

Note that Theorem 7 has a validity that goes far beyond
L

C
p families, since it applies to any set F whose functions are

weighted sums of monotone functions of single attributes,
e.g.,

P
i wi log(1+ t[Ai]), and even monotonic transforms of

those, e.g., exp(
P

i wit[Ai]).
Computing nd-Sky(r;F) using Theorem 7 is likely to be

time-consuming, since a di↵erent LP problem needs to be
solved for each F-dominance test. An alternative approach
is to explicitly compute the F-dominance regions of tuples,
and then discard those tuples that belong to at least one
of such regions. The advantage of this approach is that the
computation of the F-dominance region of a tuple t needs
to be performed once, thus independently of how many F-
dominance tests involve t. Furthermore, as shown below,
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Algorithmic alternatives

§ ND-Sky requires checking F-dominance for all pairs of tuples

§ Appropriate pre-sorting of the dataset avoids lots of tests

§ F-dominance regions need to be computed only once per 
candidate F-dominant tuple
• Very efficient

§ Although ND-Sky ⊆ Sky, first computing Sky and then 
removing F-dominated tuples is seldom beneficial

§ A tuple t in ND-Sky is also in PO-Sky if it is not F-dominated by 
any convex combination of the other tuples in ND-Sky
• Very costly
• Sufficient conditions for pruning tuples may speed up the 

computation



Effectiveness of restricted skylines vs skylines

(a) ANT: dataset size N varies. (b) ANT: # of dimensions d varies.
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(c) ANT: # of constraints c varies.

(d) UNI: dataset size N varies. (e) UNI: # of dimensions d varies. (f) UNI: # of constraints c varies.

(g) NBA: parameter p of Lp norm varies. (h) NBA: # of dimensions d varies. (i) NBA: # of constraints c varies.

Figure 4: Cardinality ratio between restricted skylines (po-Sky, nd-Sky) and Sky: UNI in (a)–(c); ANT in (d)–(f); NBA in (g), (h).

Figure 5: Correlation between nd-Sky/Sky cardinality ratio and per-

centage of preserved volume in the space of weights as the number of

constraints n varies.

instead of dominance tests).
As will be shown in Section 5.3.2, S strategies are faster

than U strategies (except perhaps for small datasets), and
VE is orders of magnitude faster than LP. Therefore, we shall
consider one-phase counterparts for SVE2 only. The pseu-
docode of SVE1 is shown in Algorithm 2. Instead of first com-
puting Sky and then carving nd-Sky out of it, SVE1 checks,
for every candidate L

C
p -dominated tuple s, first the easier

dominance (line 4) and then the harder �LC
p
-dominance

(line 7) against all non-dominated tuples in ND.
The last one-phase alternative we consider explores the

space of pairs of tuples in a dominant-“first” way (and is
thus denoted SVE1F), shown in Algorithm 3. It first enumer-
ates the candidate LC

p -dominant tuples (line 2), from best to
worst in the sorted relation, and then removes all candidate
L

C
p -dominated tuples that are dominated or �LC

p
-dominated

by it. The rationale behind SVE1F is that the strongest tu-
ples are likely to (�LC

p
-)dominate many tuples, and thus to

reduce the candidate L
C
p -dominated set early.

For the computation of po-Sky(r;LC
p), we start from the

tuples in nd-Sky(r;LC
p) and, by Theorem 11, we discard

any tuple t that is L
C
p -dominated by a convex combination

of tuples in nd-Sky(r;LC
p) \ {t}. However, checking L

C
p -

dominance via (24) may be prohibitively time consuming
when � = |nd-Sky(r;LC

p)|� 1 is large. We therefore try, in
Algorithm 4 (POND, i.e. po-Sky via nd-Sky), to reduce as
early as possible the set of candidate potentially optimal tu-
ples (PO) by adopting the following heuristics: i) we start
with a convex combination of only �̃ = 2 tuples (line 3),
which will give rise to smaller, faster-to-solve systems (24)
for testing L

C
p -dominance; as long as �̃ < |PO|� 1, this con-

dition is only su�cient for pruning, but not necessary; after
each round, we double �̃ (line 8); ii) we sortedly enumer-
ate candidate L

C
p -dominated tuples from PO in reverse order

(line 6), as the worst tuples wrt. the ordering are the most
likely to be L

C
p -dominated; iii) using linear system (24), we

check the existence of a convex combination of the first �̃
tuples in PO (line 7), as they are the best wrt. the ordering
and thus more likely to L

C
p -dominate other tuples. After this

early pruning, in the last round (enabled by line 5) all the
remaining tuples are checked against a convex combination
of all the other remaining tuples, which is now a necessary
and su�cient condition for pruning, as in Theorem 11.

5.3.2 Evaluation metrics and results
We assess e�ciency of the di↵erent algorithms for comput-

ing nd-Sky by measuring, in a number of di↵erent scenarios,
i) execution time (as measured on a machine sporting a 2.2
GHz Intel Core i7 with 16 GB of RAM), ii) number of dom-
inance tests, iii) number of F-dominance tests. For com-
puting po-Sky, we only report the execution time. In our
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Ongoing and future work



Wrap-up

§ All approaches to multi-criteria queries have pros and cons

§ We have tried to reconcile ranking queries and skylines into a 
unifying framework

§ Skylines have been generalized from two points of view:
• Non-dominated objects
• Potentially optimal objects

§ Results
• Control over the importance of attributes
• Much better control over the cardinality of the result
• Easier specification of functions than top-k queries
• Efficiency often better than skylines (but not top-k queries)



Future work

§ Computation strategies specified for the Lp class
• What happens with other classes?

§ Restricted skylines generalize skylines (not k-skybands) and 
top-k queries (for k=1, not for k>1)
• How to address these cases?
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